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Finite-lattice extrapolation algorithms 

Malte Henkelt and Gunter Schutz 
Physikalisches Institut, Universitat Bonn, Nussallee 12, 5300 Bonn 1, Federal Republic of 
Germany 

Received 30 September 1987 

Abstract. Two algorithms for sequence extrapolation, due to van den Broeck and Schwartz, 
and Bulirsch and Stoer, are reviewed and critically compared. Applications to three-state 
and six-state quantum chains and to the ( 2 1 1 ) ~  Ising model show that the algorithm of 
Bulirsch and Stoer is superior, in particular if only very few finite-lattice data are available. 

1. Introduction 

Finite-lattice techniques are a useful tool for studying field theories. The numerical 
diagonalisation of the transfer matrix, combined with finite-size scaling, is a widely 
applied method for extracting critical properties in statistical mechanics systems (for 
a review, see Barber (1983)). Studying a specific model, the calculation is done in two 
steps. First, the highest eigenvalues of the transfer matrix or, using the Hamiltonian 
formulation (see Kogut 1979), the lowest eigenvalues of the Hamiltonian are computed 
on some lattices of finite size N. Second, and this will be studied in this paper, one 
has to extrapolate the finite-size data towards the thermodynamic limit N + CO. 

A common method used to perform this extrapolation is provided by an algorithm 
proposed by van den Broeck and Schwartz (1979, hereafter referred to as VBS) and 
first applied to critical phenomena by Hamer and Barber (1981). It allows a reliable 
determination of critical quantities in the N+CO limit, in particular if the original 
sequence of finite-size data is long enough to allow for an iterative application. This 
requires sequences of at least five figures. For many two-dimensional systems, it is 
possible to meet this condition. 

For reviews on extrapolation techniques see Smith and Ford (1979) and Joyce 
(1971). For the applications we have in mind, namely critical phenomena, one usually 
has to extrapolate a sequence f N  with limit f of the asymptotic form ( N  + CO): 

f N  = f+a ,N-"l+a,N-"2+.  . . (1.1) 

where the w ,  are non-integer numbers. It was shown by Barber and Hamer (1982) that 
the VBS algorithm produces more accurate results than other known algorithms for the 
sequences ( l . l ) ,  such as, for example, Levin's (1973) U transform. Levin's U transform 
gives the best results for linearly converging sequences (Smith and Ford 1979) and 
also for the logarithmically converging sequence ( l . l ) ,  provided all w,  are integers (see 
Barber and Hamer 1982). 

t Present address: Fachbereich Physik, Universitat Essen, Postfach 103 764, D-4300 Essen 1, Federal Republic 
of Germany. 
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In this work, we explore the characteristics of another algorithm, due to Bulirsch 
and Stoer (1964, hereafter referred to as BST). A first application to critical phenomena 
was given by Henkel and Patkds (1987). We shall compare the convergence properties 
of the VBS and BST algorithms, using as examples the three-state Potts quantum chain 
(von Gehlen and Rittenberg 1986, Hamer and Barber 1981), a six-state &-symmetric 
quantum chain (Schiitz 1987, 1988, Alcaraz 1987a, b, Zamolodchikov and Fateev 1985) 
and the ( 2 + 1 ) ~  Ising model (Hamer 1983, 1987, Hamer and Johnson 1986, Henkel 
1984, 1987). We find that, in general, the BST algorithm converges faster and produces 
more reliable estimates than the VBS algorithm. 

The apparent superiority of the BST algorithm becomes more pronounced if there 
are only very short sequences (with only four entries) available. As a rule, these short 
sequences occur for three-dimensional models (Hamer 1983), but this situation is also 
common in studying higher excitations in the Hamiltonian spectrum of quantum chains. 
The investigation of the higher energy levels, rather than the ground state only, is 
motivated by the application of conformal invariance to two-dimensional models (for 
reviews see Cardy (1987a) and Rittenberg (1986)). 

The paper is organised as follows. In 0 2, we define the VBS and BST algorithms 
and discuss some of their properties. In 0 3, an application to some simple finite 
rational polynomials is given. In 0 4, the algorithms are used to estimate some critical 
exponents of the Potts and a six-state quantum chain. Emphasis will be laid on the 
stability and reliability of the estimates. Finally, to illustrate a three-dimensional model, 
an application to the ( 2 +  I )D Ising model is given. Section 5 summarises our conclusions. 
In the appendix we will briefly consider sequences with logarithmic contributions. 

2. The algorithms 

In this section, we define the VBS and BST algorithms and give some of their properties. 

2.1. VBS algorithm 

Consider a sequence f ,  ( N  = 0,1,2,  . . . ) which, in the limit N -+ CO, converges toward 
some limit 5 It is important that the N are consecutive, for example, a sequence like 
0,2,6,3, .  . . , or 0,1,3,7,8,11,.  . . , should not be taken into consideration, but a 
sequence like 0,2,4,6,8,  . . . , can still be used. To obtain the limitf, form approximants 
[ N ,  M I ,  arranged as a triangular table: 

[ O , O I  

[ I ,  01 [I ,  11 

E2901 [2,11[2,21 

[3,01[3,11 

[4,01 

[N,- l ]=KJ 

[ N ,  01 =f, 

where the [ N ,  MI are defined recursively: 

( [ N , M + l ] - [ N , M ] ) - ' + a ( [ N , M - l ] - [ N , M ] ) - '  

= ( [ N + l , M ] - [ N ,  M ] ) - ' + ( [ N - l , M ] - [ N , M ] ) - l .  (2.4) 
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The original sequence [ N ,  01 is transformed into a new one (e.g. [ N ,  11,. . ) which is 
expected to converge faster towards f: The free parameter (Y is chosen to increase the 
rate of convergence. Special cases are the Pad6 table (Y = 1 (Wynn 1966) or the 
Aitken-Shanks table a = 0 (Shanks 1955). 

If the original sequence is exactly in geometric progression 

fN = [ N ,  01 = f + g q N  (2.5) 
thenfis found from a single application ofthe VBS algorithm, with (Y = 0 (Shanks 1955). 

On the other hand, if 

fN =[N,O]=f+glN-"'l+g2N-"Z+. . * N + m  (2.6) 
when w 1  < w 2 ,  two VBS applications with (Y = -1 give (Hamer and Barber 1981, Barber 
and Hamer 1982) 

[ N, 21 =f+ O( N-"') (2.7) 
where w'  is the minimum of w 1  + 2 and w 2 ,  

2.2. EST algorithm 

Consider a sequence h ,  ( N  = 0,1,2,  . . . ) converging to zero as N + 00. In many 
applications, h ,  = 1 / N  where N stands for the length of a finite system. We stress 
that, in contrast to the VBS algorithm discussed in the last subsection, there is no need 
to restrict oneself to consecutive sequences and it is even possible to allow N to take 
non-integer values (which is important for three-dimensional models). 

Let T(  h )  be a function with an expansion 

T ( h )  = T +  a,h" + a2hZw +. . . . (2.8) 
The desired limit is obtained from a table of extrapolants: 

Tho' 

Tb" T 

Tr '  Til' 

TF' 

T(0) 

1 T $0, T (  1 1  

T(2) 
1 

and the TkN) are computed from 

T??) = 0 

TA"= T ( h N )  

(2.10) 

(2.11) 

where w is a free parameter. This algorithm arises by approximating the function T (  h )  
of (2.8) by a sequence of rational functions where the degree of the polynomial in the 
denominator is equal to or larger by one than the degree of the polynomial in the 
numerator. As for the VBS algorithm, the sequence TI" is expected to converge faster 
than the original sequence Tb" = T ( h N )  and so on. 
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This algorithm was first proposed as a variant of Romberg integration (see BST, 

Joyce 1971, Stoer 1976) where w = 2 is known a priori. Here, we are going to study 
the influence of a varying w on the estimates of the desired limit T. 

If the function T ( h )  has the expansion 

T ( h ) =  T+g1h"I+g2h"7+.  . . (2.13) 

instead of (2.8), it follows easily from (2.12) that 
T \ N + l ) =  T+O(h$+,,)  (2.14) 

where w'  is the minimum of w 2  and 2w1. This result should be compared with (2.7) 
for the VBS algorithm, where two instead of one iterations are needed. 

Finally, to get some idea about the reliability of the determination of T, define 

& ( I )  m = 2( TYI) - TZ)) .  (2.15) 

In the limit i + CO, one should expect I T k )  - TI < E ; )  (see BST, Stoer 1976). Minimising 
E ; )  gives an intrinsic criterion for choosing w. 

Let us summarise what we have found so far. 
( a )  While the VBS algorithm requires a consecutive sequence of finite-lattice data, 

there is no requirement for the BST algorithm. This makes the BST algorithm more 
flexible for applications. 

( b )  Comparing the VBS and BST algorithms, we find that they both will 'absorb' 
the leading correction(s) to the limit. Since it takes one BST application compared to 
two VBS applications to absorb the leading correction (see (2.7) and (2.14)), we can 
already suspect that the BST should be converging faster. This will become explicit by 
looking at some examples, as will be done in the next sections. 

(c) We also note that the BST algorithm is less sensitive to rounding errors than 
the VBS algorithm. 

3. Application to finite rational polynomials 

After the description of the two algorithms in 0 2, we will apply them to two simple 
examples. We consider 

and define as 'finite-size sequence' for lattices of length L = h-I,  2 6 L < L,,, : 

fN=[N,OI={L(f),L(f) ,  . . . , X ( 1 / L n a x ) I  j = 1 , 2  
(3.2) h = 1 1  Tb'Yh) =J;(h,)  i 29 3,. . .$1/Lmax* 

Although we are dealing in this paper with problems of statistical physics, where 
finite-size data are generally given by infinite series expansions, it is interesting to study 
the behaviour of the algorithms for functions such as (3.1). Before proceeding to 
realistic examples in 0 4, we can study some important characteristics by extrapolating 
sequences with well known properties. 

Table 1 contains the VBS approximants of f l (h) ,  L,,,=8 with a = -1. Column 1 
shows the initial sequence f,, and the next columns show the Mth  approximants 
[ N, MI. They converge monotonically and the difference from the limit fl(0) = 1 lies 
within l%o for the last approximants [N, 21 and [N, 31. 
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Table 1.  VBS approximants for the function f , ( h )  = 1 +ah’’*, h = 1/L with L = 2,3 , .  . . , 8 .  
The left-hand column gives the sequencef , ( l /L)  and columns 1-3 give the approximants 
with a = -1. 

M 0 1 2 3 

[ N ,  M I  1.176 7767 
1.144 3376 1.096 4582 
1.125 0000 1.083 4446 1.001 0712 
1.111 8034 1.074 5987 1.000 5662 1.000 1687 
1.102 0621 1.068 0812 1.000 3444 
1.094 491 1 1.063 021 1 
1.088 3883 

Table 2 gives the corresponding BST approximants Ti) forf,( h )  with w = 0.5. Again 
we find monotonic convergence, but already after the second iteration the error is less 
than lo-’. Applying VBS with a longer sequence one obtains this precision in the fifth 
approximation for at least L,,, = 14. Comparison shows that both algorithms yield 
reliable results. However, BST converges much faster and thus shorter sequences are 
sufficient for approximation. This is of special importance in many applications. Some 
examples are given below. 

Other properties become apparent if one considersf,( h ) ,  L,,, = 10. Studying tables 
3 and 4 we find that convergence is much poorer in both cases. Additionally we find 

Table 2. BST approximants for f , ( h ) ,  h = 1/ L with L = 2,3, . . . ,8 .  The left-hand column 
gives the sequencesf,(h) and columns 1-6 give the approximants with w =0.5. 

m 0 1 2 3 4 5 6 

1.176 7767 
1.144 3376 
1.125 0000 
1.111 8034 
1.102 0621 
1.094 491 1 
1.088 3883 

1.0193136 
1.014 2139 
1.011 2996 
1.009 4005 
1.008 0598 
1.007 0607 

1.000 0000 
1.000 0000 
1 .ooo 0000 
1.000 0000 
1 .ooo 0000 

1 .ooo 0000 
1.000 0000 
1.000 0000 
1.000 0000 

1 .ooo 0000 
1.000 0000 
1.000 0000 

1 .ooo 0000 
1.000 0000 1 .ooo 0000 

Table 3. Same as table 1 forf,(h) = f l ( h ) - f h 2  with L,,,= 10. 

M 0 1 2 3 4 

[ N ,  MI 1.093 4434 
1.107 3005 
1.104 1667 
1.0984701 - 
1.092 8028 
1.087 6884 
1.083 1800 
1.079 2181 
1.075 7236 

1.104 7447 
1.111 1328 1.1078104 

-0.001 5381 0.359 7862 46.564 6127 
1.040 3737 1.048 3093 1.05 1 4624 1.050 5989 
1.049 6414 1.050 5584 1.050 2733 
1.050 4946 1.050 0514 
1.049 4576 
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Table 4. Same as table 2 for L(h) with Lmax = 10. 

m O  1 2 3 4 5 6 7 8 

Ti:) 1.093 4434 
1.107 3005 ~:~~~~~~~ 1.101 8985 
1.104 1667 1.1156057 0'993 0.998 5526 
1.098 4701 

1.087 6884 6617 0.91 1 0240 0.997 'Io5 1.000 2020 l'ooo 6049 1.000 3257 
"Og3 

1'0792181 1.0149674 
1.075 7236 

1.217 3396 0'995 4180 0.999 6346 4037 1.000 5443 ,,ooo 1693 
1.092 8028 "03' 7614 0.520 1514 0'996 8926 1.000 041 1 '.Ool Oo41 1.000 4011 1,0000987 1.000 oono 

0.998 4072 2613 1,0004222 "02' 8369 
0.956 0488 

1.017 8445 n,972 6387 0.998 8114 

approximants which are far off the limit f 2 ( 0 )  = 1. Varying a or w respectively one 
observes a pole-like behaviour of the last approximants. These poles result from higher 
corrections produced by the algorithms and are of width A a  = 0.5 and Aw = 0.05 
respectively (figures l (a )  and ( b ) ) .  

Furthermore, notice that VBS does not yield the correct value off2(0) except in the 
region of instability near a = -2. Examining the differences of the approximants, as 
well as studying their dependency on a, suggests for the extrapolantfrBS(0) = 1.050 (5). 
The number in brackets gives the error in the last digit estimated from the mean value 
of [ N ,  31 and [ N ,  41 for a = -1, excluding [l,  31. 

The BST extrapolant Ti') has a pole-like behaviour, too. However, one obtains 
Ti')  = 1,000 0000 for w = 0.5 (table 4) which is indeed the leading correction (3.1). The 
error T y ' -  T;') (2.15) has a minimum within 0.45<w <0.51 (table 5), suggesting 
f?"(O) = 1.000 (2). We obtain in a self-consistent way an estimate for f2(0) and the 
leading correction. BST is less sensible to the higher correction h 2  than VBS. 

a w 
Figure 1. (a) VBS and ( b )  BST extrapolants forf,(h) (2.1) as a function of the parameter 
a or w,  respectively, with limit fi(0) = 1. 
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Table 5. Last four BST approximants for f Z ( h ) ,  L,,,= 10 with ( a )  w =0.45, ( b )  w = O S 1  
and (c )  w = 1. 

m 5 6 7 8 

( a )  T!:) 1.001 1319 
0'998 3220 0.998 3357 o,998 3205 0'999 3445 0.998 3288 o.998 4569 

0'998 8375 0.998 3915 
0.998 6571 

( b )  7%' 1.0027250 l.ool 0423 

l'ooo 5897 1.000 2573 
1.001 3949 

"Ool 01" 1.0008368 
1.000 8368 

l'ooo 8904 1.000 4645 

(c )  T16' 1.023 7363 1,018 3063 

"020 6289 1.016 5516 1'015 1,013 4292 8804 1.012 4736 
1'018 4981 1.015 2271 1.0169281 

4. Application to finite-size scaling problems 

Having discussed the general properties of the VBS and BST algorithms in § 2 and used 
both the VBS and BST algorithm in a simple example, we shall apply them to some 
quantum chains describing continuous phase transitions. The Hamiltonian for the 
most general critical self-dual Z,-symmetric quantum chain, defined on N sites, is 

n - l  N 

~ = - p  (aiu;+air;r;:;;)  

U;: = r;: = 1 

i = l  k = l  

where ai = an-i (to ensure hermiticity) and 

(4.1) 

(4.2) 
ukrr = akl exp(2 r i /n ) rpk  + (1 - s k / ) r / V k .  (4.3) 

Periodic boundary conditions rN+l = rl are assumed. 
H commutes with the operator 

N 

Q =  C q k  ( q ) a b  = asa,h mod n a, b = 1, .  . . , n (4.4) 
k = l  

and consequently can be written as a direct sum of block matrices, the blocks being 
labelled by the eigenvalues of Q. We shall compute the finite-size scaling amplitudes 

N 
gi = lim - ( E i  - E,) 

N + x  2 7  (4.5) 

where E, is some energy level and Eo is the energy of the ground state. From the 
hypothesis of conformal invariance at the 2~ critical point, it follows that 8, = x, where 
x,  is a bulk critical exponent describing the power-like decay of the two-point correlation 
function at the critical point (Cardy 1984). 

In the following, we concentrate on two special cases. 
(i) The three-state Potts quantum chain with 

n = 3  a , = a , = l  s=;a 
(von Gehlen and Rittenberg 1986). 

(4.6) 
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(i i)  A six-state quantum chain with 

n = 6  a ,  = a5 = 1 a ,  = a4 = I/d3 3 - 2  5 = 3  (4.7) a -I 

(Schutz 1987, 1988, Alcaraz 1987a, b, Zamolodchikov and Fateev 1985). 
In studying Lhese models, our main interest is not the precise determination of 

some critical exponents. Rather, these models should be taken as prototypes, illustrating 
the behaviour of the approximants which is expected to be general in character. For 
this reason, we have deliberately not included data on the Ising quantum chain (see 
Henkel and Patk6s 1987, Henkel 1988) where the finite-size data are too well behaved 
to be considered as typical examples. However, we should mention that, in some 
cases, logarithms are involved in the expamion of the E,. Then neither of the two 
algorithms yields good results (see the appendix). 

4.1. Three-state Potts quantum chain 

As a first example, consider the three-state Potts quantum chain. It is well known that 
the energy gaps of quantum chains correspond to inverse correlation lengths (see 
Kogut 1979). Consider the first excitation in the sector Q = 0, which corresponds to 
the correlation length of the energy density $. Its critical exponent x, = 2 - y  = 0.8 (see 
Wu 1982). We computed finite-size estimates for x, from (4.5), for N = 2, . . . , 13. In 
table 6, we give the VBS approximants, computed with a = -1, and in table 7, the BST 

approximants, obtained with w = 0.8, are shown. The choice of the values for a and 
w is motivated by (2.7), which should give optimal convergence for Q = -1 for the 
VBS algorithm and the fact that the correction exponent w ,  (see (2.13)) is known to 
be w ,  = 0.8 for the three-state Potts quantum chain (von Gehlen et a1 1987). Other 
values of both Q and w will be considered below. 

In both tables 6 and 7, the approximants are seen to converge towards some limit. 
While for the BST algorithm one obtains a value for x,, which deviates from the expected 
value by less than 2 x the VBS algorithm yields x, = 0.82. This phenomenon, 
namely that the VBS algorithm shows a tendency to converge towards ‘wrong’ values, 
is not new. Hamer and Barber (1981) proposed an ‘N-shift’ technique, which in our 

Table 6. VBS approximants for the critical exponent x, of the energy density E* of the 
three-state Potts quantum chain with a = -1. The left-hand column gives the finite-lattice 
results for N = 2-13. 

M 0 1 2 3 4 5 

[ N,  M I  0.848 8264 
0.860 9292 
0.857 3452 
0.852 0847 
0.847 2425 
0.843 1016 
0.839 6044 
0.836 6399 
0.834 1059 
0.831 9193 
0.8300151 
0.828 3423 

0.858 1640 
0.868 5915 
0.791 1769 
0.818 6550 
0.820 6014 
0.820 1434 
0.819 1898 
0.818 1584 
0.817 1692 
0.816 2560 

0.863 5342 
0.806 391 1 0.85 1 6065 
0.820 6067 0.820 2943 0.820 3593 
0.820 2248 0.820 3765 0.820 3004 0.820 3525 
0.820 9847 0.820 5548 0.820 2090 0.820 2817 
0.826 5559 0.823 0967 0.807 1675 
0.864 7659 0.847 1675 
0.756 0266 
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case amounts to replacing N in (4.5) by N +  E ,  where E is a free parameter. There is, 
however, no prescription how to choose an appropriate value of E.  We conclude that 
the introduction of E does not increase the objectivity of the extrapolation procedure. 

As a second point, we note that approximants of a higher order can be obtained 
with the BST than with the VBS algorithm. As a somewhat drastic example, assume 
that only the first five entries of the first column in tables 6 and 7 had been obtained. 
Then, we can compute only the second VBS approximant (-OM), to be compared 
with the fourth BST approximant (-0.799). 

Finally, we note that a single application of both algorithms does not yield very 
satisfactory results. This can be seen by comparing the first and second columns in 
both tables 6 and 7. There is some improvement compared to the raw data (and the 
improvement is larger for the BST algorithm), but the real advantage of using extrapola- 
tion algorithms only becomes apparent if the higher approximants are studied. 

Having studied the table of approximants for a fixed value of CY (or U ) ,  we now 
examine the consequences of letting these parameters vary freely. In figures 2-4, we 
give the estimates for x, as a function of a or w,  respectively. Chains with a maximal 
length N,,, of 6, 8 or 13 sites are used in figures 2, 3 and 4, respectively. While the 
longer sequences (N,, ,  = 8,13) represent the situation usually encountered studying 
the lowest excitations of H (for 2~ models), the shorter chains are typical for higher 
excitations and 3~ models in general. 

a W 

Figure 2. ( a )  V B S  and ( b )  BST estimates of the critical exponent x, of the energy density 
E^ of the Potts quantum chain as a function of the parameter a or w ,  respectively. The 
theoretical prediction is x, = 0.8 (Wu 1982). Chains with N = 2 ,3 ,  . . . , N,,, with N,,, = 6 
were used. 

The first observation is that there exist broad ranges of values for both a and U ,  

for which x, is independent of CY (or w ) .  The regions are separated from each other 
by poles of the function x , ( a )  (or x , ( w ) ) .  The width of the poles becomes narrower 
(and the poles more frequent) if the length of the sequence (the size N,,, of the largest 
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W 

Figure 3. ( a )  VBS and ( b )  BST estimates of the critical exponent x, of the Potts quantum 
chain, with N,,, = 8. 

a 
Figure 4. ( a )  VBS and ( b )  BST 

chain, with N,,, = 13. 
estimates 

W 

of the critical exponent x, of the Potts quantum 

lattice used) increases. For the BST algorithm, there are less and much narrower poles 
than for the VBS algorithm (see also figure 1). This difference is especially pronounced 
for N,,, = 8 (figure 3) and also clearly visible for N,,, = 13. 

It is also apparent that, for almost all values of a inside the stability region, the 
VBS algorithm yields x, = 0.82, in disagreement with the expectation x, = 0.8 (Wu 1982), 
while the BST algorithm gives x, =0.80. As already mentioned, one might use the 



2628 M Henkel and G Schutz 

‘N-shift’ technique of Hamer and Barber (1981) to overcome this problem, at the price 
of having to fix a second free parametert. 

Finally, we note that in the limit N,,, + 00 there is an apparent tendency for the 
VBS and BST approximants as a function of a (or w )  to behave like a constant plus a 
sum of derivatives of delta functions. It would be of interest to prove this conjecture 
rigorously. 

4.2. Six-state quantum chain 

As a second example, we take the six-state quantum chain defined by (4.7). For a 
detailed discussion of this model see Schutz (1987,1988), Zamolodchikov’and Fateev 
(1985) and Alcaraz (1987a, b). In table 8, we give the low-lying spectrum for the sector 
Q = 2 ((4.4) and see Schutz (1988) for more details). The states can be characterised 
by a pair of scaling dimensions (A, A) and x = A + A. For the lowest level, the largest 
lattice has N,,, = 8 sites, but a correct extrapolation becomes more difficult for the 
higher levels, as finite-size data could only be obtained for four lattices for the highest 
energies considered. Comparing the results of the VBS and BST algorithm with the 
theoretical prediction X t h  (Zamolodchikov and Fateev 1985), one gets an idea of the 
reliability of the extrapolation methods applied. In general, the BST algorithm produces 
more accurate results than the VBS algorithm. We also note that, for the level charac- 
terised by (A, A) =(A, A), the VBS algorithm yields a result which appears to be 
extremely stable, yet shows a large deviation from the expected value X t h .  This 
phenomenon already occurred in the Potts quantum chain. 

for both the lowest level of table 8, with a ‘magnetic’ exponent x = x2 = and the energy 
density exponent x,  = (Zamolodchikov and Fateev 1985) of the six-state quantum 
chain. The properties of the approximants in table 9 are similar to those of the Potts 
quantum chain discussed above. Again, we find the BST algorithm to give more reliable 

Next, we consider the dependence of (Y and w .  In table 9, we give 

Table 8. Part of the spectrum for Q = 2 of the six-state chain of (4.7). A and are the 
scaling dimensions and x , ~  = A +  A. xvBs and xBST are the predictions from the VBS and 
BST algorithms. The numbers in brackets give the expected uncertainty in the last given 
digits as estimated from the variation with cz or w and the differences of the highest 
approximants. I f  approximants appear several times for one x , ~ ,  this corresponds to a 
degeneracy of the state. 

0.1667 
1.1667 
1.6667 
2.1667 
2.6667 
3.1667 

3.6667 
4.1667 

0.167 (1) 
1.2477 (2 )  
1.66 (2 )  
2.17 (1) 
2.6 (1) 
3.1 ( 1 )  
3.25 (5) 
3.22 (3) 
3.65 (3) 
3.9 (1) 

0.1667 (3) 
1.170 (5) 
1.666 (3) 
2.16 (2) 
2.68 (2) 
3.16 ( 1 )  
3.24 (2 )  
3.22 (2 )  
3.64 (3 )  
4.11 (2 )  

t Although cz = -1 is the ‘correct’ value to take for a large class of sequences (Barber and Hamer 1982), 
the very fact that one does observe a convergence towards a ‘wrong’ limit indicates that the finite-size data 
considered here are from a different class of sequences. 
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Table 9. The last column of the VBS and B S T  approximants for the critical exponents x2 = 
and x, = f  (defined in the text) of the six-state quantum chain. 

-2.0 
-1.8 
-1.6 
-1.4 
-1.2 
-1.0 
-0.8 
-0.6 
-0.4 
-0.2 

0.6221 
0.6324 
0.6416 
0.6527 
0.6703 
0.7046 
0.8089 

-6.6292 
0.4083 
0.5038 

0.1827 
0.0054 
0.1606 
0.1840 
0.1651 
0.1665 
0.1670 
0.1674 
0.1677 
0.1679 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 
1.2 
1.5 

0.4915 
0.4945 
0.4999 
0.4981 
0.5068 
0.5126 
0.5178 
0.5230 
0.5324 
0.5451 

0.1660 
0.1663 
0.1665 
0.1667 
0.1668 
0.1670 
0.1671 
0.1672 
0.1674 
0.1679 

estimates. For x,, as met in two other cases before, the VBS algorithm appears to 
converge towards a 'wrong' value. 

In order to illustrate the selection of w for the BST algorithm, we show in figure 5 
the last difference E Y )  (see (2.15)) for the exponent x, as a function of w. For w -0.53, 
E!' )  shows a well defined minimum with rapidly rising flanks if w is varied. Usually, 
the other E:) ,  e.g. E Y )  and E Y ) ,  also have a minimum at approximately the same value 
of w. 

4.3. (2 + 1 ) ~  Ising model 

As the last example, we take the ( 2 + i ) ~  Ising model (Hamer 1983, 1987, Hamer and 
Johnson 1986, Henkel 1984, 1987) as an illustration of the increased difficulty of 

o~oolor----l 

L 

t 1 
O I , ,  , I 1  I I I I I 
0.45 0.50 0.55 

W 

Figure 5. Difference E:"' for the thermal exponent x, of the six-state quantum chain as a 
function of w .  
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obtaining reliable extrapolation estimates in a three-dimensional model. We consider 
square N x N lattices with periodic boundary conditions. The notation of (4.1)-(4.4) 
will be used throughout. Let 10) be the eigenvector of H corresponding to the ground- 
state energy and 11) and 12) the eigenvectors corresponding to the first excitation in 
the sectors Q = 1 and Q = 0, respectively. With = a'( k) and rk = ax (k), where ux 
and IT' are Pauli matrices, we define 

1 
E = T C  u z ( k )  

N k  (4.8) 

where the sum runs over the whole lattice. One expects that the matrix elements (i iEli) ,  
i = 0, 1,2,  are independent of i (Henkel 1987). 

The difficulty in determining (i lEli)  comes from the fact that only four lattices are 
available ( N  = 5 needs a Hilbert space of 86 056 states, but for N = 6, about 10' states 
should be considered, which is out of the question). In table 10, we give the finite-size 
data for N = 2,  3, 4, 5 for the (i lEli) .  It is apparent from the data that these sequences 
are slowly converging, especially for i = 2. 

Table 10. Finite-size data and first VBS and third BST approximant to the matrix elements 
( i l E l i )  in the ( 2 + 1 ) ~  king  model. The numbers in brackets for the BST approximant are 
estimated from the stability with respect to w.  

N (OIEIO) (11Ell) (21 E 12) 

2 0.854 57 0.418 00 0.098 68 
3 0.864 73 0.653 66 0.553 34 
4 0.874 54 0.743 11 0.697 58 
5 0.881 10 0.788 59 0.762 95 

VBS 0.894 0.836 0.817 
BST 0.892 (2) 0.90 (1) 0.88 (2) 

Since there are only four lattices, the VBS algorithm can only be applied once. So 
the best we can do is to compute the [ 1,1] approximant from the lattices with N = 3,4,5 
which is given in table 10 in the row labelled VBS. We already saw that it is essential 
to be able to iterate the VBS algorithm. So it is not surprising to see that the VBS 

approximants are quite far from each other since finite-size corrections are especially 
large in this example. 

On the other hand, the BST algorithm still allows the computation of the third 
approximant, which is also given in table 10. We find that the numbers agree within 
the given uncertainties. It is instructive to compare with the third approximant for the 
exponent x, of the Potts quantum chain, in the fourth column of table 7. The BST 

algorithm is apparently more able to eliminate large finite-size corrections, as was 
already seen for the example fi( h )  in 9 2.  

5. Conclusions 

In this paper, we have studied the properties of the sequence extrapolation algorithms 
of van den Broeck and Schwartz (VBS) and Bulirsch and Stoer (BST). Our conclusions 
are summarised as follows. 

( a )  These algorithms have to be applied iteratively to yield reliable estimates. 
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( b )  The BST algorithm allows the computation of higher approximants and con- 
sequently more iterations than the VBS algorithm. 

(c) Both algorithms tend to ‘absorb’ the leading corrections to the limit (see (2.7) 
and (2.14)). The first correction is absorbed by the BST algorithm in one iteration and 
by the VBS algorithm in two iterations. 

( d )  Both algorithms contain a free parameter ( a  or U ) .  For a large range of values 
of a ( w  ), the estimates are independent of a ( U ) .  

( e )  Comparing the estimates with the theoretical expectations, the BST algorithm 
in general yields more accurate results than the VBS algorithm. 

c f )  Even in regions of stability with respect to a, the VBS algorithm shows a tendency 
to converge towards a ‘wrong’ limit, while there is no sign of such an effect for the 
BST algorithm. 

( g )  The differences between the BST and VBS algorithms become more pronounced 
if only very few finite-size data are available. 

Appendix 

Finite-size sequences do not always have purely power-like corrections: in some cases 
logarithms are involved (Cardy 1987b). In order to get an idea how VBS and BST work 
for such sequences we consider 

1 
f 3 ( h ) =  1+-  

In h 

h ( h )  = f3 (h)  + h 
with 2 s  L S  10, h = 1/L and, as in (3.2), 

a W 

Figure 6. ( a )  VBS and ( b )  BST extrapolants for f 3 ( h )  ( A l )  as a function of the parameter 
a or U,  respectively, with limit f3(0) = 1.  
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Tablel l .  ~ ~ ~ a p p r o x i m a n t s ( w = l O - ~ ) f o r f , ( h ) = l + l / l n h ,  h = l / L w i t h  L=2,3 ,  . . . ,  10. 

m 0 1 2 3 4 5 6 7 8 

T::) -0.442 6950 
o'ooo Oo30 0.999 9500 o,999 9582 O'OE9 7608 -0.000 0038 

0'999 9500 0.999 9583 0'999 9499 0.999 9580 
0.999 9500 o,999 9584 0.999 9499 o,999 9583 0.999 9499 

0'278 6525 -0.000 0235 
0.378 6651 
0.441 8894 -o'ooo 0483 0.999 9500 0.999 9500 0.999 9503 
0.486 1067 1::::; y::y 0.999 9500 0'999 9582 0.999 9500 ::;;; ii:i 0.999 9502 

0.999 9583 
0.999 9500 o,999 9583 0.999 9501 -0.000 1293 

0.544 8804 -o,ooo 1560 0.999 9500 
0.565 7055 

0.999 9583 
o,999 9584 0.999 9502 

0.9 I ' F  

3 

Figure 7. ( a )  VBS and ( b )  BST extrapolants forf4(h)  (Al)  as a function of the parameter 
a or w,  respectively, with limit f4(0) = 1. 

Table 12. BST approximants with ( a )  w = 0.2 and ( b )  w = 2 for f 4 ( h )  =f,(h) + h, h = 1/ L 
with L = 2 , 3 ,  . . . , l o .  

m 5 6 7 8 

( a )  T;,!' 1.3005677 o,965 0513 

1'138 2208 0.955 8098 0'928 o,928 3503 7832 0.929 8626 
"080 7591 0.951 7173 1.052 4749 

(b)  T c )  0.724 0054 o.758 5244 
0.734 1339 

0'742 2349 0.758 2919 
0.748 5148 

0'752 0414 0.755 3730 0'752 2796 0.759 3023 
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Figure 6 gives the last approximants fY"'(0) = [ 1 , 5 ]  ( a )  and f3BST(0) = Ti') ( b )  depen- 
dent on a and w respectively. Both extrapolants vary strongly with a or w,  respectively. 
However, BST yields the correct value f 3 ( 0 )  = 1 in the limit w + 0. As table 1 1  shows, 
the differences of the extrapolants for w = 

The situation changes if one adds the piece h t o h (  h )  ( A l )  and applies the algorithm 
again (figure 7) .  As above fTBS(0) (figure 7 ( a ) )  does not give any information about 
the limit one wishes to calculate, but BST (figure 7 ( b ) )  also exhibits rather poor 
convergence for all values of w (see tables 12(a )  and ( b ) ) .  The differences T' '+')-  T'" 
(see (2 .15) )  for w = 0.2 (table 1 2 ( a ) )  are scarcely better than those for w = 2 (table 
12( b ) )  and thus we do not have a criterion to choose w from considering these quantities. 
However, as for f 3 ( h ) ,  the extrapolants f4BST(0) are nearer to f4(0) for w small than 
for large values of w. 

These observations show that both algorithms do not give satisfactory estimates if 
logarithmic corrections play an important part in the series expansion of a finite-size 
quantity. The error one has to expect is quite large. 

are extremely small. 
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